Skip to main content
Version: Next

LangGraph

Integrate LangGraph's graph-based orchestration with Agent Kernel.

Installation

pip install agentkernel[langgraph]

Basic Usage

from typing import TypedDict
from langgraph.graph import StateGraph, END
from agentkernel.cli import CLI
from agentkernel.langgraph import LangGraphModule

class State(TypedDict):
messages: list

def agent_node(state: State):
# Your logic
return {"messages": state["messages"] + ["response"]}

# Build graph
workflow = StateGraph(State)
workflow.add_node("agent", agent_node)
workflow.set_entry_point("agent")
workflow.add_edge("agent", END)

# Compile
graph = workflow.compile()
graph.name = "assistant"

LangGraphModule([graph])

if __name__ == "__main__":
CLI.main()

Complex Graph

from langgraph.graph import StateGraph, END

# Multi-node graph with conditional routing
workflow = StateGraph(State)
workflow.add_node("analyzer", analyze_node)
workflow.add_node("responder", respond_node)
workflow.add_node("validator", validate_node)

workflow.set_entry_point("analyzer")
workflow.add_conditional_edges(
"analyzer",
router_func,
{
"respond": "responder",
"validate": "validator"
}
)
workflow.add_edge("responder", END)
workflow.add_edge("validator", "responder")

graph = workflow.compile()
graph.name = "complex_agent"

Configuration

export OPENAI_API_KEY=sk-...

Features

  • ✅ Graph-based workflows
  • ✅ Conditional routing
  • ✅ State management
  • ✅ Checkpointing
  • ✅ Human-in-the-loop

Example

See examples/cli/langgraph for complete examples.